

Getting to the Bottom Using Domain Wall Fermions

Brendan Fahy

S. Hashimoto, K. Nakayama, M. Tomii JLQCD Collaboration

BNL March 2016

Getting to the Bottom

Fahy

Heavy Results

HQET

- ► Lattice discretization effects are significant at large quark masses as some cutoff effects go as *am*.
- ▶ The JLQCD collaboration has recently produced very fine Domain Wall(DW) Lattices a=0.080 to 0.044fm
- Can the discretization effects for DW be understood and accounted for at large quark masses
- How far can we push the limits and hopefully extrapolate to the bottom

Project Overview

Fahy Introduction

Heavy

Results

- ▶ $N_f = 2 + 1$ simulations on 15 Esnambles with 10,000 MD times for each.
- ► Simulations at three lattice spacing $a^{-1} \approx 2.4, 3.6$ and 4.5 GeV
- ► Pion masses from 230 MeV to 500 MeV
- Domain-Wall (Möbius) fermions
 - ▶ Good chiral symmetry with $m_{\text{res}} \ll m_{ud}$. $m_{\text{res}} \approx 1 MeV$ on our coarsest lattice; ≈ 0 on the finer lattices.
 - Small residual mass is achieved by the Möbius representation and using stout link-smearing
 - ▶ Simpler Renormalization $Z_V = Z_A$
 - Topological charge not fixed
- Fine lattices for heavy quarks: How well controlled are the discretization effects?

JLQCD Lattices

Lattice Spacing	$L^3 imes T$	L_5	am_{ud}	am_s	m_π [MeV]	$m_{\pi}L$
$\beta = 4.17, a = 0.080 \text{fm}$	$32^{3} \times 64$	12	0.0035	0.040	230	3.0
$a^{-1} = 2.453(4) \text{ GeV}$			0.0070	0.030	310	4.0
			0.0070	0.040	310	4.0
			0.0120	0.030	400	5.2
			0.0120	0.040	400	5.2
			0.0190	0.030	500	6.5
			0.0190	0.040	500	6.5
	$48^{3} \times 96$	12	0.0035	0.040	230	4.4
$\beta = 4.35, a = 0.055 \text{fm}$	$48^{3} \times 96$	8	0.0042	0.018	300	3.9
$a^{-1} = 3.610(9) \text{ GeV}$			0.0042	0.025	300	3.9
			0.0080	0.018	410	5.4
			0.0080	0.025	410	5.4
			0.0120	0.018	500	6.6
			0.0120	0.025	500	6.6
$\beta = 4.47, a = 0.044 \text{fm}$	$64^{3} \times 128$	8	0.0030	0.015	280	4.0
$a^{-1} = 4.496(9) \text{ GeV}$						

Measurements

Introduction

Heavy Results

- ightharpoonup Correlators measured on each lattice for both smeared and unsmeared Z_2 sources
 - ► Axial and pseudoscalar current correlators were produced on 100 configurations with 6 – 8 source points each.
- Sources and sinks were smeared with Gaussian smearing
- Masses and amplitudes were computed with a combined fit to the axial and pseudoscalar correlators with a combination of smeared and unsmeared sources and sinks.
- ▶ Chiral fermions means $Z_V = Z_A$ where Z_V was computed using short distance space-like correlators

D and D_s decay constant

Introduction

Heavy Results

HOET

- Similar results were presented recently at the last lattice conference
- The lattice spacing dependence is small with cutoff effects of our coarsest lattice of only about 1%
- $ightharpoonup f_D = 212.1 \pm 5.2 \text{ MeV}$ and $f_{D_{-}} = 245.5 \pm 2.8$ MeV.

- ► Since cutoff effects at the charm are reasonably controlled, how far above the charm mass can we go?
- ▶ Bare quark masses chosen $m_i = (1.25)^i m_c$:
- ► All heavy quarks treated with DW

Beta	$m_0 = m_c$	m_1	m_2	m_3	m_4	m_5
4.17	0.4404	0.5505	0.6881	0.8600		
4.35	0.2729	0.3411	0.4264	0.5330	0.6661	0.8327
4.45	0.2105	0.2631	0.3289	0.4111	0.5139	0.6423

Heavy-light and heavy-strange results

Fahy Introduction

Heavy Results

HQET

Heavy-light and heavy-strange results

Fahy Introduction

Heavy Results

HQET

Fit excluding $m_q > 0.7$ assuming $(F_D \sqrt{m})^{\infty} (1 + b m_{\pi}^2) (1 + c \Delta m_{ss}) (1 + C_1/m + C_2/m^2 + \gamma (a^2 m^2) + \mu (a^2))$

Corrections motivated by HQET

Introduction Heavy Results

HOFT

► Lattice discritization errors become large when *am* is large

 We would like to understand what goes wrong in the large mass limit

- Follow the ideas of Lepage and assume small momentum and expand the action
- ▶ Use these to determine the low order corrections to the wave function normalization and energies $E = m_1 + \frac{p^2}{2m_2} + \dots$

Wave function renormalization

Fahy Introduction

Heavy Results

HOET

In the Continuum

$$S(p) = \frac{1}{\not p + m} \rightarrow C(t, \vec{p} = 0) = \int \frac{dp_0}{2\pi} S(p) e^{ip_0 t} = \frac{1 + \gamma^0}{2} e^{-mt}$$

On the lattice

$$S(p) = \text{Complicated} \rightarrow C(t, \vec{p} = 0) = A_{KLM} \frac{1 + \gamma^0}{2} e^{-m_1 t}$$

This correction to the normalization known as the Kronfeld-Lepage-Mackenzie factor

Renormalized

Introduction

Introduction

Heavy Results HQET

Mass Corrections

Introduction

Heavy Results

HQET

Checking the KLM factor

Fahy
Introduction
Heavy

▶ We checked the KLM factor by numerically integrated the propagator for particular heavy quark masses of interest and compared to the KLM factor.

Results

- This reverse engineering of the KLM factor agreed at large time separations but for large quark masses they disagreed significantly.
- ▶ We suspect this may be due to the DW fermions non locality being significant at very large quark masses.
- ► Compute corrected correlators by dividing the correlators by the integrated lattice propagator and multiply by the continuum result.

Corrected Correlators

Introduction

minoduction

Heavy Results HQET

Fit to the Corrected Values

Fahy Introduction

Heavy Results

HQET

Fit assuming

$$(F_D\sqrt{m})^{\infty}(1+bm_{\pi}^2)(1+c\Delta m_{ss})(1+C_1/m+C_2/m^2+\gamma(a^2m^2)+\mu(a^2))$$

Conclusions and Future work

Fahy Introduction

► Results of heavy mesons seem promising and the cutoff effects for heavy domain wall fermions can be partially understood

Heavy Results

► Corrections motivated by Heavy Quark Effective theory seems to account for most of the problems as we approach masses of 1/a

- ► Extrapolation to the B might not be completely unreasonable
- ▶ Better understanding of the correlator normalization and possible effects of non local fermions still need to be worked out
- ▶ Determine more appropriate fit functions to extrapolate to the *B*
- ► Try the "ratio method" using ratios of successive heavy masses to constrain the extrapolation

Introduction

Heavy Results

HQET

Thank You.

Introduction

Heavy Results

HQET

Backup Slides

Topological charge

Introduction

Fahy

Heavy

Results HQET

Topological charge for $a^{-1}=2.4~{\rm GeV}$ (top) and $a^{-1}=3.6~{\rm GeV}$ (bottom)

Corrections

Introduction

miroduction

Heavy Results

$$m_1 = \log\left(1 - W_0 + \sqrt{(1 - W_0)^2 - 1}\right)$$

$$m_2 = \sqrt{W_0^2 - 2W_0} \left(\frac{Q + 1 - 2W_0}{(Q + 1) + (Q - 1)(2W_0^2 + W_0^2)}\right)$$

$$A_{KLM}^{DW} = \frac{2}{(1 - m^2) \left[1 + \sqrt{\frac{Q}{1 + 4W_0}} \right]}$$

$$Q = \left(rac{1+m^2}{1-m^2}
ight)^2$$
 and $W_0 = rac{1+Q}{2} - rac{\sqrt{3Q+Q^2}}{2}$

